Piotr Sulewski https://orcid.org/0000-0002-0788-6567 , Damian Stoltmann https://orcid.org/0000-0001-7053-2684

© Piotr Sulewski, Damian Stoltmann. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

The first goal of the article is to apply the modified Cramer-von Mises (CM) goodness-of-fit test for normality to a practical problem. The modification of the test involves varying the formula for calculating the empirical distribution function (EDF). The critical values are obtained using the Monte Carlo method for sample sizes 𝑛 = 10,20 and at a significance level of α=0.05. The second goal is to calculate the power of several tests for appropriately selected alternative distributions. The article shows that the values of constants 𝛼, 𝛽 in the EDF formula affect the power of the CM test. The effectiveness of the new proposal is illustrated by the analysis of real data sets.

KEYWORDS

empirical distribution function, goodness-of-fit test, Cramer-von Mises test, power of test

JEL

C02, C12, C46, G00

REFERENCES

Afeez, B. M., Maxwell, O., Otekunrin, O. A., & Happiness, O. I. (2018). Selection and Validation of Comparative Study of Normality Test. American Journal of Mathematics and Statistics, 8(6), 190–201. https://doi.org/10.5923/j.ajms.20180806.05.

Ahmad, F., & Khan, R. A. (2015). Power Comparison of Various Normality Tests. Pakistan Journal of Statistics and Operation Research, 11(3), 331–345. https://doi.org/10.18187/pjsor.v11i3.845.

Aliaga, A. M., & Marti´nez-González, E., & Cayón, L., & Argüeso, F., & Sanz, J. L., & Barreiro, R .B. (2003). Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data. New Astronomy Reviews, 47(8–10), 821–826. https://doi.org/10.1016/j.newar.2003.07.010.

Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Annals of Mathematical Statistics, 23(2), 193–212. https://doi.org/10.1214/aoms/1177729437.

Arnastauskaite, J., Ruzgas, T., & Braženas, M. (2021). An Exhaustive Power Comparison of Normality Tests. Mathematics, 9(7), 1–20. https://doi.org/10.3390/math9070788.

Azzalini, A. (1985). A Class of Distributions which Includes the Normal Ones. Scandinavian Journal of Statistics, 12(2), 171–178.

Bayoud, H. A. (2021). Tests of normality: new test and comparative study. Communications in Statistics – Simulation and Computation, 50(12), 4442–4463. https://doi.org/10.1080/03610918.2019.1643883.

Bloom, G. (1958). Statistical estimates and transformed beta-variables. John Wiley & Sons.

Bonett, D. G., & Seier, E. (2002). A test of normality with high uniform power. Computational Statistics and Data Analysis, 40(3), 435–445. https://doi.org/10.1016/S0167-9473(02)00074-9.

Bontemps, C., & Meddahi, N. (2005). Testing normality: a GMM approach. Journal of Econometrics, 124(1), 149–186. https://doi.org/10.1016/j.jeconom.2004.02.014.

Borrajo, M. I., González-Manteiga, W., & Martínez-Miranda, M. D. (2024). Goodness-of-fit test for point processes first-order intensity. Computational Statistics & Data Analysis, 194, 1–16. https://doi.org/10.1016/j.csda.2024.107929.

Brys, G., Hubert, M., & Struyf, A. (2008). Goodness-of-fit tests based on a robust measure of skewness. Computational Statistics, 23(3), 429–442. https://doi.org/10.1007/s00180-007-0083-7.

Chernobai, A., Rachev, S. T., & Fabozzi, F. J. (2012). Composite Goodness-of-Fit Tests for Left-Truncated Loss Samples. In C. F. Lee (Ed.), Handbook of Financial Econometrics and Statistics (pp. 575–596). Springer.

Coin, D. (2008). A goodness-of-fit test for normality based on polynomial regression. Computational Statistics and Data Analysis, 52(4), 2185–2198. https://doi.org/10.1016/j.csda.2007.07.012.

Cramér, H. (1928). On the Composition of Elementary Errors. First paper: Mathematical deductions. Scandinavian Actuarial Journal, (1), 13–74. https://doi.org/10.1080/03461238.1928.10416862.

Desgagné, A., & Lafaye de Micheaux, P. (2018). A powerful and interpretable alternative to the Jarque-Bera test of normality based on 2nd-power Skewness and Kurtosis, using the Rao’s Score Test on the APD family. Journal of Applied Statistics, 45(13), 2307–2327. https://doi.org/10.1080/02664763.2017.1415311.

Desgagné, A., Lafaye de Micheaux, P., & Ouimet, F. (2022). Goodness-of-fit tests for Laplace, Gaussian and exponential power distributions based on ?-th power skewness and kurtosis. Statistics. A Journal of Theoretical and Applied Statistics, 57(1), 94–122. https://doi.org/10.1080/02331888.2022.2144859.

Durbin, J., & Knott, M. (1972). Components of Cramér-von Mises statistics. I. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 290–307.

Esteban, M. D., Castellanos, M. E., Morales, D., & Vajda, I. (2001). Monte Carlo comparison of four normality tests using different entropy estimates. Communications in Statistics – Simulation and Computation, 30(4), 761–785.

Feuerverger, A. (2016). On Goodness of Fit for Operational Risk. International Statistical Review, 84(3), 434–455.

Filliben, J. J. (1975). The Probability Plot Correlation Coefficient Test for Normality. Technometrics, 17(1), 111–117. https://doi.org/10.1080/00401706.1975.10489279.

Gan, F. F., & Koehler, K. J. (1990). Goodness-of-Fit Tests Based on P-P Probability Plots. Technometrics, 32(3), 289–303. https://doi.org/10.2307/1269106.

Gel, Y. R., & Gastwirth, J. L. (2008). A robust modification of the Jarque-Bera test of normality. Economics Letters, 99(1), 30–32. https://doi.org/10.1016/j.econlet.2007.05.022.

Gel, Y. R., Miao, W., & Gastwirth, J. L. (2007). Robust directed tests of normality against heavytailed alternatives. Computational Statistics & Data Analysis, 51(5), 2734–2746. https://doi.org/10.1016/j.csda.2006.08.022.

Giles, D. E. (2024). New Goodness-of-Fit Tests for the Kumaraswamy Distribution. Stats, 7(2), 373–389. https://doi.org/10.3390/stats7020023.

Harter, H. L., Khamis, H. J., & Lamb, R. E. (1984). Modified Kolmogorov-Smirnov tests of goodness of fit. Communications in Statistics – Simulation and Computation, 13(3), 293–323. https://doi.org/10.1080/03610918408812378.

Hernandez, H. (2021). Testing for Normality: What is the Best Method? (ForsChem Research Reports, vol. 6, 2021-05). https://doi.org/10.13140/RG.2.2.13926.14406.

Kellner, J., & Celisse, A. (2019). A one-sample test for normality with kernel methods. Bernoulli, 25(3), 1816–1837. https://doi.org/10.3150/18-BEJ1037.

Khamis, H. J. (1990). The ??-corrected Kolmogorov-Smirnov test for goodness-of-fit. Journal of Statistical Planning and Inference, 24(3), 317–335. https://doi.org/10.1016/0378-3758(90)90051-U.

Khamis, H. J. (1992). The ?-corrected Kolmogorov-Smirnov test with estimated parameters. Journal of Nonparametric Statistics, 2(1), 17–27. https://doi.org/10.1080/10485259208832539.

Khamis, H. J. (1993). A comparative study of the &-corrected Kolmogorov-Smirnov test. Journal of Applied Statistics, 20(3), 401–421. https://doi.org/10.1080/02664769300000040.

Khatun, N. (2021). Applications of Normality Test in Statistical Analysis. Open Journal of Statistics, 11(1), 113–122. https://doi.org/10.4236/ojs.2021.111006.

Kolmogorov, A. (1933). Sulla determinazione empirica di unalegge di distributione. Giornale dell’ Istituto Italiano degli Attuari, (4), 83–91.

Krauczi, É. (2009). A study of the quantile correlation test for normality. TEST. An Official Journal of the Spanish Society of Statistics and Operations Research, 18(1), 156–165. https://doi.org/10.1007/s11749-007-0074-6.

Kuiper, N. H. (1960). Tests concerning random points on a circle. Indagationes Mathematicae (Proceedings), 63, 38–47. https://doi.org/10.1016/S1385-7258(60)50006-0.

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org/10.1080/01621459.1967.10482916.

Luceno, A. (2006). Fitting the generalized Pareto distribution to data using maximum goodnessof-fit estimators. Computational Statistics & Data Analysis, 51(2), 904–917. https://doi.org/10.1016/j.csda.2005.09.011.

Ma, Y., Kitani, M., & Murakami, H. (2024). On modified Anderson-Darling test statistics with asymptotic properties. Communications in Statistics – Theory and Methods, 53(4), 1420–1439. https://doi.org/10.1080/03610926.2022.2101121.

Marange, C. S., & Qin, Y. (2019). An Empirical Likelihood Ratio Based Comparative Study on Tests for Normality of Residuals in Linear Models. Metodoloski zvezki, 16(1), 1–16. https://doi.org/10.51936/ramh7128.

Mbah, A. K., & Paothong, A. (2015). Shapiro-Francia test compared to other normality test using expected p-value. Journal of Statistical Computation and Simulation, 85(15), 3002–3016. https://doi.org/10.1080/00949655.2014.947986.

von Mises, R. (1931). Über einige Abschätzungen von Erwartungswerten. Journal für die reine und angewandte Mathematik, 1931(165), 184–193. https://doi.org/10.1515/crll.1931.165.184.

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive Statistics and Normality Tests for Statistical Data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18.

Nofal, Z. M., Afify, A. Z., Yousof, H. M., & Cordeiro, G. M. (2017). The generalized transmuted-G family of distributions. Communications in Statistics – Theory and Methods, 46(8), 4119–4136. https://doi.org/10.1080/03610926.2015.1078478.

Nosakhare, U. H., & Bright, A. F. (2017). Evaluation of Techniques for Univariate Normality Test Using Monte Carlo Simulation. American Journal of Theoretical and Applied Statistics, 6(5–1), 51–61. https://doi.org/10.11648/j.ajtas.s.2017060501.18.

Noughabi, H. A., & Arghami, N. R. (2011). Monte Carlo comparison of seven normality tests. Journal of Statistical Computation and Simulation, 81(8), 965–972. https://doi.org/10.1080/00949650903580047.

Pettitt, A. N., & Stephens, M. A. (1976). Modified Cramér-von Mises statistics for censored data. Biometrika, 63(2), 291–298. https://doi.org/10.1093/biomet/63.2.291.

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.

Romao, X., Delgado, R., & Costa, A. (2010). An empirical power comparison of univariate goodness-of-fit tests for normality. Journal of Statistical Computation and Simulation, 80(5), 545–591. https://doi.org/10.1080/00949650902740824.

Scott, W. F. (2000). Tables of the Cramér-von Mises distributions. Communications in Statistics – Theory and Methods, 29(1), 227–235. https://doi.org/10.1080/03610920008832479.

Scott, W. F., & Stewart, B. (2011). Tables for the Lilliefors and Modified Cramer-von Mises Tests of Normality. Communications in Statistics – Theory and Methods, 40(4), 726–730. https://doi.org/10.1080/03610920903453467.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591.

Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. Annals of Mathematical Statistics, 19(2), 279–281. https://doi.org/10.1214/aoms/1177730256.

Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons. Journal of the American Statistical Association, 69(347), 730–737. https://doi.org/10.1080/01621459.1974.10480196.

Sulewski, P. (2019). Modification of Anderson-Darling goodness-of-fit test for normality. Afinidad. Journal of Chemical Engineering Theoretical and Applied Chemistry, 76(588), 270–277. https://www.raco.cat/index.php/afinidad/article/view/361876.

Sulewski, P. (2021). Two component modified Lilliefors test for normality. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 429–455. https://doi.org/10.24136/eq.2021.016.

Sulewski, P. (2022). Modified Lilliefors goodness-of-fit test for normality. Communications in Statistics – Simulation and Computation, 51(3), 1199–1219. https://doi.org/10.1080/03610918.2019.1664580.

Tavakoli, M., Arghami, N., & Abbasnejad, M. (2019). A Goodness of Fit Test For Normality Based on Balakrishnan-Sanghvi Information. Journal of The Iranian Statistical Society, 18(1), 177–190. https://doi.org/10.29252/jirss.18.1.177.

Terán-García, E., & Pérez-Fernández, R. (2024). A robust alternative to the Lilliefors test of normality. Journal of Statistical Computation and Simulation, 94(7), 1494–1512. https://doi.org/10.1080/00949655.2023.2291138.

Torabi, H., Montazeri, N. H., & Grané, A. (2016). A test for normality based on the empirical distribution function. SORT, 40(1), 55–88. https://doi.org/10.2436/20.8080.02.35.

Uhm, T., & Yi, S. (2021). A comparison of normality testing methods by empirical power and distribution of P-values. Communications in Statistics – Simulation and Computation, 52(9), 4445–4458. https://doi.org/10.1080/03610918.2021.1963450.

Uyanto, S. S. (2022). An Extensive Comparisons of 50 Univariate Goodness-of-fit Tests for Normality. Austrian Journal of Statistics, 51(3), 45–97. https://doi.org/10.17713/ajs.v51i3.1279.

Watson, G. S. (1962). Goodness-of-fit tests on a circle. II. Biometrika, 49(1–2), 57–63. https://doi.org/10.1093/biomet/49.1-2.57.

Wijekularathna, D. K., Manage, A. B. W., & Scariano, S. M. (2020). Power analysis of several normality tests: A Monte Carlo simulation study. Communications in Statistics – Simulation and Computation, 51(3), 757–773. https://doi.org/10.1080/03610918.2019.1658780.

Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation, 81(12), 2141–2155. https://doi.org/10.1080/00949655.2010.520163.

Yazici, B., & Yolacan, S. A. (2007). A comparison of various tests of normality. Journal of Statistical Computation and Simulation, 77(2), 175–183. https://doi.org/10.1080/10629360600678310.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0